

Université Cheikh Anta Diop de Dakar □□◆□□

OFFICE DU BACCALAUREAT

E-mail: office@ucad.edu.sn site web: officedubac.sn

2024GS21NA0124 Durée : 4 heures

Séries: S1-S1A-S3 – Coef. 8

Epreuve du 1^{er} groupe

MATHEMATIQUES

1/3

Les calculatrices électroniques non imprimantes avec entrée unique par clavier sont autorisées. Les calculatrices permettant d'afficher des formulaires ou des tracés de courbe sont interdites. Leur utilisation sera considérée comme une fraude

(Cf. Circulaire n° 5990/OB/DIR. du 12 08 1998).

EXERCICE 1: (04 points)

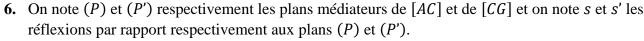
Dans l'espace, on considère 8 points O, A, B, C, D, E, F et G tels que OABCGDEF soit un cube d'arête une unité.

L'espace est muni du repère orthonormé $(O; \overrightarrow{OA}, \overrightarrow{OC}, \overrightarrow{OG})$.

1. Donner les coordonnées des points A, C, G et E. 1 pt

- 2. a) Déterminer les coordonnées du vecteur AG \(\lambda \) AC.
 b) En déduire une équation cartésienne du plan (AGC).
 0,5 pt
 0,25 pt
- 3. Montrer que la droite (OE) est perpendiculaire au plan (AGC). 0,25 pt
- **4.** Déterminer les coordonnées du point I intersection de la droite (OE) et du plan (AGC).
- **5.** Calculer alors le volume du tétraèdre *OAGC*.

0,5 pt



a) Déterminer $(s' \circ s)(A)$.

0,5 pt

b) Démontrer que $s' \circ s$ est une rotation d'axe (OI).

0,25 pt

c) Soit θ son angle, déterminer $|\theta|$.

0,25 pt

EXERCICE 2 : (05 points)

- 1. On considère les nombres a = 57370 et b = 104275
 - a) Déterminer le PGCD de a et b.

0,5 pt

b) L'équation ax + by = 5 admet-elle des solutions dans $\mathbb{Z} \times \mathbb{Z}$?

0,25 pt

- **2.** Soit (**E**) l'équation : 11474x + 20855y = 1.
 - a) Vérifier que le couple (3059, -1683) est solution de l'équation (E).

0,25 pt

b) Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (**E**).

0,5 pt

c) En déduire les solutions dans $\mathbb{Z} \times \mathbb{Z}$ de l'équation ax + by = 5.

0,5 pt

Pour chacune des propositions suivantes, dire si elle est vraie ou fausse :

 $0.25 \text{ pt} \times 4 = 1 \text{ pt}$

 P_1 : Dans la base p où p est un entier naturel supérieur ou égal à 2, p-1 est un chiffre.

P₂: Dans la base 7, 8 est un chiffre.

 P_3 : Dans la base 16, E est un chiffre.

 P_4 : Dans la base 8, les chiffres sont : 0; 1; 2; 3; 4; 5; 6; 7.

Séries: S1-S1A-S3 Epreuve du 1er groupe

4. Deux commerçantes Anta et Fatou se rendent au marché pour acheter des articles.

Un article coûte 5 francs l'unité.

Anta et Fatou disposent respectivement d'un montant de S_1 et de S_2 en francs.

On sait que $S_1 = 1x00y2$ en base huit, et $S_2 = x1y003$ en base sept.

a) Donner, en fonction de x et y les expressions de S_1 et de S_2 en base dix.

0,5 pt

- b) Déterminer les chiffres x et y pour que chacune des deux commerçantes puisse dépenser tout le montant à sa disposition.
- c) En déduire le nombre d'articles que chacune d'elles pourra acheter.

0,5 pt

0,5 pt

0,25 pt

0,5 pt

0,5 pt

1 pt

PROBLEME (11 points)

PARTIE A (5,5 points)

Soit n un entier naturel. On considère la fonction f_n définie par :

Résoudre dans]0, 2[l'équation $g(t) = g(\beta)$.

transformation que l'on déterminera.

3. Etudier les variations de *g*.

4. Tracer C_a .

$$f_n(x) = e^{\left(n + \frac{1}{2}\right)x} \times \sqrt{2 - e^x}$$

On note C_n la courbe représentative de f_n dans le plan muni d'un repère orthonormé $(0; \vec{\iota}, \vec{\jmath})$. L'unité graphique est 4 cm.		
1.	Déterminer le domaine de définition de f_n , puis calculer les limites aux bornes de cet ensemble.	0,75 pt
2.	Montrer que toutes les courbes C_n passent par deux points fixes que l'on déterminera.	0,5 pt
3.	Etudier les positions relatives des courbes C_{n+1} et C_n pour $n \in \mathbb{N}$.	0,5 pt
4.	Etudier les variations de f_n .	0,5 pt
5.	Montrer que f_n admet un maximum α_n puis exprimer α_n en fonction de n .	0,5 pt
6.	Dresser le tableau de variations de f_n .	0,5 pt
7.	Tracer les courbes C_1 , C_2 et C_3 .	1,5 pt
8.	Soient (U_n) et (V_n) les suites définies pour tout $n \in \mathbb{N}$ par : $U_n = \ln\left(\frac{2n+1}{n+1}\right)$ et $V_n = f_n(U_n)$.	
	a) Déterminer la limite de U_n .	0,25 pt
	b) Calculer la limite de $ln(V_n)$ et en déduire celle de V_n .	0,5 pt
PARTIE B (3,25 points)		
Soit φ la fonction définie sur]0 , 2[par : $\varphi(t) = \sqrt{t(2-t)}$		
1.	Montrer que $\varphi(e^t) = f_0(t)$.	0,25 pt
2.	Soit g la fonction définie sur l'intervalle $]0$, $2[$ par $: g(t) = \ln(\varphi(t))$.	
	a) Soit β un réel de l'intervalle]0, 2[.	

b) En déduire que la courbe C_g de la fonction g dans le repère $(0; \vec{t}, \vec{j})$, est invariante par une

2023GS21NA0124 Séries : S1-S1A-S3

Epreuve du 1er groupe

- **5.** Soit h la restriction de g à l'intervalle]0, 1].
 - a) Montrer que h est une bijection de [0, 1] sur un intervalle J que l'on précisera.

0,25 pt

b) Donner l'expression $h^{-1}(t)$ de h^{-1} pour tout élément t de J.

0,5 pt

6. Soit $G = h^{-1} \circ g$.

Déterminer le domaine de définition de G, puis l'expression G(t) de G pour tout t de l'intervalle]0, 2[.

0,5 pt

PARTIE C (2,25 points)

Pour tout entier naturel n, on considère la fonction φ_n définie sur [0,2] par :

$$\varphi_0(t) = \sqrt{t(2-t)}$$
 et $\forall n \in \mathbb{N}^*$ $\varphi_n(t) = t^n \sqrt{t(2-t)}$.

On désigne par F_n la fonction définie de l'intervalle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dans \mathbb{R} par :

$$F_n(\theta) = \int_0^{1+\sin\theta} \varphi_n(t) dt.$$

- 1. Justifier l'existence de $F_n(\theta)$ pour tout entier naturel n et pour tout réel θ de l'intervalle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- 2. Démontrer que pour tout entier naturel n, F_n est dérivable sur l'intervalle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et déterminer sa fonction dérivée F'_n .
- **3.** Déterminer $F_0(\theta)$ et $F_1(\theta)$ pour $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- **4.** Calculer l'aire \mathcal{A} du domaine plan \mathcal{D} défini par :

$$\mathcal{D} = \{ M(t, y) \text{ tels que } 0 \le t \le 1 \text{ et } \varphi_1(t) \le y \le \varphi_0(t) \}.$$
 0,5 pt

5. Dans le plan muni du repère orthonormé $(0; \vec{t}, \vec{j})$, on note (Γ_0) la courbe de la fonction φ_0 et $({\Gamma'}_0)$ la courbe d'équation : $y = -\varphi_0(t)$.

On pose $(\Gamma) = (\Gamma_0) \cup ({\Gamma'}_0)$.

Montrer que (Γ) est un cercle dont on précisera le centre et le rayon.

0,5 pt