2024G18-27NB0123-33

Durée: 2 heures Séries : S1S1AS3-coef 8 Séries : S2S2AS4S5-coef 6

Epreuve du 2^{eme} groupe

☐ ☐ ♠ ☐ ☐ OFFICE DU BACCALAUREAT E. mail: office@ucad.edu.sn Site web: officedubac.sn

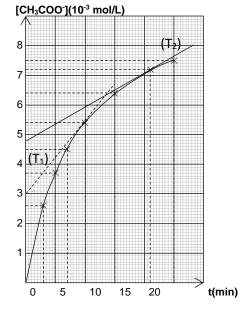
SCIENCES PHYSIQUES

Question 1

On désire synthétiser le dipeptide noté P₁ de formule semi-développée :

$$H_2N$$
— CH — CO — NH — CH_2 — CO_2H
 CH_3

- 1.1. Recopier la formule semi-développée de P₁ et encadrer la liaison peptidique.
- **1.2.** Ecrire les formules semi-développées des acides α -aminés à utiliser pour la synthèse de P_1 .
- 1.3. Ecrire l'équation-bilan de la réaction de synthèse de P1.


Question 2

Une solution aqueuse contient à la date t = 0 de l'éthanoate de méthyle de concentration molaire 10⁻² mol/L et de l'hydroxyde de sodium de concentration molaire 10⁻² mol/L. La réaction se fait suivant le schéma:

$$CH_3CO_2CH_3 + OH^- \rightarrow CH_3CO_2^- + CH_3OH$$
.

L'étude cinétique de cette réaction a permis de tracer la courbe donnant l'évolution de la concentration des ions éthanoate en fonction du temps (voir courbe ci-contre).

- <u>2.1.</u> Donner le nom de la réaction. Quelles sont ses caractéristiques ?
- <u>2.2.</u> Déterminer graphiquement la vitesse de formation des ions éthanoate aux dates: $t_1 = 10$ min et $t_2 = 20$ min. Justifier qualitativement l'évolution de la vitesse.

Question 3:

Une solution d'acide benzoïque C_6H_5COOH molaire a le même pH qu'une solution d'acide chlorhydrique dont la concentration en ion H_3O^+ est 0,008 mol.l⁻¹.

- **3.1.** Calculer le pH de la solution d'acide benzoïque.
- 3.2. Trouver les concentrations des différentes espèces présentes dans la solution d'acide benzoïque et en déduire son pka. On donne Ke = 10⁻¹⁴.

Question 4

Les composantes du vecteur accélération d'un point mobile sont $\vec{a} \begin{cases} \ddot{x} = 0 \\ \ddot{y} = -3 \\ \ddot{z} = 0 \end{cases}$

A l'instant t = 0, le mobile est en M_0 $\begin{cases} x_0 = 1 \\ y_0 = 2 \text{ et son vecteur vitesse initial est } \vec{v}_0 \end{cases}$ $\begin{cases} \dot{x}_0 = 1 \\ \dot{y}_0 = 1 \end{cases}$

(x ; y et z sont en mètres).

- **4.1.** Etablir les équations horaires du mouvement du mobile.
- 4.2. Déterminer l'équation cartésienne de la trajectoire du mobile, puis donner sa nature.
- 4.3. Calculer l'altitude maximale atteinte par le point mobile. Comment nomme-t-on cette altitude ?

2024G18-27NB0123-33 Séries : S1-S1A-S3-S2-S2A-S4-S5

Epreuve du 2^{eme} groupe

Question 5

Un noyau d'uranium 235, sous l'impact d'un neutron se scinde en 2 noyaux : un noyau de krypton 90 et un noyau de baryum 143, avec libération de neutrons. L'équation de la réaction nucléaire s'écrit : $^{235}_{92}U + ^1_0n \rightarrow ^{90}_ZKr + ^{143}_{56}Ba + x^1_0n$

5.1. De quel type de réaction nucléaire s'agit-il?

5.2. Déterminer les valeurs de x et Z.

5.3. Calculer l'énergie libérée par cette réaction.

Données :

Masses en unité de masse atomique (u): $m(neutron) = m_n = 1,00866$;

m(proton) = mp = 1,00728; $m(uranium) = m_U = 234,99332$; $m(krypton) = m_{Kr} = 89,89972$; $m(baryum) = m_{Ba} = 142,88982$.

Unité de masse atomique (u) : $1u = 931,5 \text{ MeV.c}^{-2}$.

Question 6

Alimenté sous une tension sinusoïdale de pulsation ω_0 (pulsation à la résonance d'intensité), un circuit (R,L,C) en série a un facteur de qualité Q = 3. Sa bande passante est de 45π rad.s⁻¹ et lorsque la tension efficace est de 15000 mV alors il est parcouru par un courant d'intensité efficace égale à 250 mA.

<u>6.1.</u> Déterminer les valeurs de R, L, ω_0 et C.

<u>6.2.</u> Trouver la valeur de la tension efficace aux bornes du condensateur à la résonance d'intensité.

Question 7

On étudie à l'aide d'un teslamètre l'intensité *B* du champ magnétique créé par un courant passant dans un solénoïde en son centre.

On utilise un solénoïde de longueur $\ell = 0.80$ m comportant N = 768 spires.

On obtient les résultats suivants :

I(A)	1,0	2,0	3,0	4,0
B(T)	120.10 ⁻⁵	240.10 ⁻⁵	360.10 ⁻⁵	480.10 ⁻⁵
$\frac{B}{I}(A/T)$				

- **7.1.** Recopier puis compléter le tableau ci-dessus. Déduire une relation numérique entre B et *I*.
- <u>7.2.</u> Dans la formule théorique liant B, n et I intervient un coefficient μ_0 appelé perméabilité du vide.
- **7.2.1.** Rappeler cette formule théorique.
- **7.2.2.** Déduire des questions précédentes la valeur de μ_0 .

Question 8

Les satellites météorologiques comme Méteosat-8 sont des appareils d'observation géostationnaires. Ce satellite a été lancé par ARIANE 5 le 28 août 2002. Il est opérationnel depuis le 28 janvier 2004. Il fournit de façon continue des informations couvrant une zone circulaire de la surface de la Terre.

8.1. Préciser les conditions à remplir par Méteosat-8 pour qu'il soit géostationnaire.

8.2. En déduire, pour Méteosat-8, la valeur du rayon $r = R_T + h$ de son orbite puis celle de son altitude h.

Données : période de révolution de la Terre autour de l'axe de ses pôles T = 86164 s ; rayon de la Terre R_T = 6370 km ; constante gravitationnelle K = 6,67.10⁻¹¹ S.I. ; masse de la Terre M_T = 5,98.10²⁴ kg.

Questions	Q ₁	Q ₂	Q ₃	Q ₄	Q ₅	Q_6	Q ₇	Q ₈
S1-S3 (points)	2	2	2	3	3	2	3	3
S2-S4-S5 (points)	2,5	3	2,5	2,5	2,5	2	3	2